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INTERACTION OF SHEAR FLOWS OF AN IDEAL

INCOMPRESSIBLE FLUID IN A CHANNEL

UDC 532.591+517.948A. A. Chesnokov

The problem of the decay of an arbitrary discontinuity for the equations describing plane–parallel
shear flows of an ideal fluid in a narrow channel is considered. The class of particular solutions
corresponding to fluid flows with piecewise constant vorticity is studied. In this class, the existence of
self-similar solutions describing all possible unsteady wave configurations resulting from the nonlinear
interaction of the specified shear flows is established.
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Introduction. Many mathematical models describing the propagation of long-wave perturbations in shear
(vortex) fluid flows reduce to nonlinear integrodifferential equations. A qualitative analysis of various models of
long-wave theory was performed in [1] using the generalization of the hyperbolicity concept developed by Teshukov
and the method of characteristics for systems of equations with operator coefficients [2]. The results of these studies
show both differences and similarities between these models and hyperbolic differential systems (in particular, the
presence of a continuous range of characteristic velocities). The evolution of solutions of generalized hyperbolic
nonlinear integrodifferential equations can lead to the occurrence of strong discontinuities, which makes it necessary
to correctly formulate the equations of motion in the form of conservation laws and to analyze the problem of the
decay of an arbitrary discontinuity (Riemann problem).

In the present paper, the problem of the decay of an arbitrary discontinuity is considered for nonlinear
equations describing shear flows with piecewise constant vorticity in a narrow channel. In this class, a self-similar
solution is obtained and studied. In the region of shear flow interaction, the fluid flow is shown to have a substantially
two-dimensional unsteady nature. This is manifested in the formation of jet flow along the interface between the
flows, which is directed to the upper or lower boundary of the channel, depending on the vorticity ratio. A similar
formulation was studied by Teshukov for a free-boundary model [3] with certain constraints imposed on the initial
data to satisfy the conditions of strong nonlinearity of the characteristics. In the present paper, a solution of the
shear flow interaction problem is constructed without constraints on their vorticities and the corresponding wave
configurations that include a simple wave or a simple wave and a shock are analyzed. In the case of interaction of
flows with arbitrary monotonic (in depth) velocity profiles, a discretization of the integrodifferential equations is
proposed and differential conservation laws are derived.

1. Formulation of the Problem. The equations of plane–parallel motion of an ideal incompressible fluid
in a channel are written as

ut + uux + vuy + ρ−1px = 0, ε2(vt + uvx + vvy) + ρ−1py = −g,

ux + vy = 0, v(t, x, 0) = 0, v(t, x, h0) = 0.

Here the dimensionless variables t, x, y, u, v, and p are the time, Cartesian coordinates, and velocity and pressure
components; the constants ρ, g, and h0 are the density, acceleration of gravity, and channel depth (without loss
of generality, these constants can be set equal to unity); ε is the ratio of the vertical scale to the horizontal one,
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which is considered small. In the approximate theory, terms of order ε2 can be ignored, resulting in a hydrostatic
pressure distribution with depth: p = gρ(h0 − y) + ρp∗(t, x) (ρp∗ is the dimensionless pressure on the upper cover
of the channel). As a result, we obtain the following integrodifferential model:

ut + uux + vuy + p∗x = 0, v = −
y∫

0

ux(t, x, y′) dy′,

h0∫
0

ux(t, x, y′) dy′ = 0. (1)

The last equation of system (1) implies that the fluid discharge in the channel

Q(t) =

h0∫
0

u(t, x, y) dy

does not depend on the variable x. Moreover, in the absence of sources, the discharge Q(t) can be considered equal
to zero since Eqs. (1) admit the transformation to the noninertial coordinate system

X = x − f(t), U = u − f ′(t), P ∗ = p∗ + xf ′′(t) (2)

with an arbitrary function f(t).
From (1) it follows that the functions u0(t, x) and u1(t, x) (the velocities on the upper and lower boundaries

of the channel) satisfy the equations

u0t + u0u0x + p∗x = 0, u1t + u1u1x + p∗x = 0. (3)

Using any of Eqs. (3), it is possible to eliminate the pressure p∗ from system (1) and to reduce the integrodifferential
model to the evolutionary form. Then, for the relative velocity w(t, x, y) = u(t, x, y)−u1(t, x), we obtain the equation

wt + (w2/2 + wu1)x + vwy = 0, (4)

where

v = −yu1x −
y∫

0

wx(t, x, y′) dy′, u1 = h−1
0

(
Q(t) −

h0∫
0

w(t, x, y) dy
)
.

To solve Eq. (4), it is necessary to specify the fluid discharge in the channel Q(t) and the initial distribution of
the relative velocity w(0, x, y) such that w(0, x, h0) = 0. Next, we assume that the discharge Q = 0 [by virtue of
transformation (2), this does not limit the generality of the approach]. The initial data for Eq. (4) are specified as

w
∣∣∣
t=0

=

{
ur(y) − ur(h0), x > 0,

ul(y) − ul(h0), x < 0,
(5)

where ur(y) and ul(y) are arbitrary specified functions that satisfy the condition

Q =

h0∫
0

ur(y) dy =

h0∫
0

ul(y) dy = 0. (6)

The initial data (5) are a generalization of the classical formulation of the Riemann problem for the integrodifferential
equation (4). The solution of problem (4), (5) describes the unsteady wave configurations resulting from the
interaction of the specified shear flows filling the channel.

In some cases, to analyze the characteristic properties and derive the conservation laws for long-wave models,
it is expedient to use mixed Euler–Lagrangian variables [4]. In Eqs. (1), transformation to these coordinates is
performed by changing the variable y = Φ(t, x, λ) [Φ(t, x, λ) is a solution of the Cauchy problem]:

Φt + u(t, x, Φ)Φx = v(t, x, Φ), Φ(0, x, λ) = Φ0(x, λ) (0 ≤ λ ≤ 1).

The change of variables is invertible provided that Φλ �= 0. For the functions Φλ = u(t, x, λ) and Φλ = H(t, x, λ),
we have the following system of differential equations with an additional integral condition:

(u − u1)t + ((u2 − u2
1)/2)x = 0, Ht + (uH)x = 0,

1∫
0

H dλ = h0 (u1 = u(t, x, 1)). (7)
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Fig. 1. Two-layer fluid flow with positive (a) and negative (b) piecewise constant vorticities: 1) flow
velocity profile with vorticity ω1; 2) the same with vorticity ω2; 3) interface between the flows with
vorticities ω1 and ω2.

In [5], system (7) is reduced to the evolutionary form

wt + (w2/2 + wu1)x = 0, Ht + (uH)x = 0,

u1 = −
( 1∫

0

H dλ
)−1

1∫
0

wH dλ, u = w + u1

(8)

and studied using the generalization of the concepts of characteristics and hyperbolicity for systems with operator
coefficients [1]. For flows with a monotonic-in-depth velocity profile (uλ �= 0), the characteristic equation

χ(k) = − 1
ω1(u1 − k)

+
1

ω0(u0 − k)
+

1∫
0

( 1
ω

)
λ

dλ

u − k
= 0 (9)

was obtained, the existence of a continuous characteristic spectrum k(t, x) = u(t, x, λ) was established, and the
hyperbolicity conditions

∆ arg (χ+/χ−) = 0, χ± �= 0

were formulated. Here ω = uλ/H ; the complex functions χ±(u(λ)) are the limiting values of χ(k) from the upper
and lower half-planes on the segment [u0, u1]; the increment of the argument of the function χ+/χ− is calculated
for λ varying from 0 to 1; the subscripts 0 and 1 indicate that the functions are taken for λ = 0 and 1, respectively.

To determine the discontinuous solutions of the model of shear fluid flow in a channel, we use the system
of conservation laws (7). The first equation is the local conservation law for the relative momentum, the second
equation is the local mass conservation law, and the last equation is the closing one. The first two equations of
system (7) coincide with the conservation laws proposed in [6, 7] to describe the discontinuous solutions of vortex
shallow-water equations that model the propagation of long-wave perturbations in a free-boundary fluid layer. The
conditions at the discontinuity corresponding to the conservation laws (7) are written as

[(u − D)2 − (u1 − D)2] = 0, [(u − D)H ] = 0, [Q] = 0. (10)

Equations (10) imply the relation [ω] = [uλ/H ] = 0 (the vorticity is conserved in passing through the discontinuity).
2. Equation of Two-Layer Flow with Piecewise Constant Vorticity. We consider the problem (1)

with initial data of the form (5), in which

ur(y) = ω1y + ur
0, ul(y) = ω2y + ul

0

(ωi, ur
0, and ul

0 are constants). Using formula (6), we determine the velocities on the lower and upper covers of the
channel:

ul
0 = −ω2h0/2, ur

0 = −ω1h0/2, ul
1 = ω2h0/2, ur

1 = ω1h0/2. (11)
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In the region of flow interaction (the region ABCF in Fig. 1), the solution of Eqs. (1) is written as

u(t, x, y) =

{
Ω1y + u0(t, x), 0 ≤ y ≤ h(t, x),

Ω2(y − h0) + u1(t, x), h(t, x) ≤ y ≤ h0;
(12)

v(t, x, y) =

{
−yu0x, 0 ≤ y ≤ h(t, x),

(h − y)u1x − hu0x, h(t, x) ≤ y ≤ h0.
(13)

For the case presented in Fig. 1a (Fig. 1b), Ω1 = ω1 and Ω2 = ω2 (Ω1 = ω2 and Ω2 = ω1). The configurations
shown in Fig. 1a (Fig. 1b) occur for positive (negative) vorticities ωi. We note that it is sufficient to examine one
of these cases because, by virtue of symmetry about the central line of the channel, they are reduced to each other
by an appropriate change of variables.

Using the solution representation (12) and the continuity condition for the velocity at the interface between
the flows with constant vorticities Ω1 and Ω2, we express u1 in terms of u0 and h:

u1(t, x) = (Ω1 − Ω2)h(t, x) + u0(t, x) + Ω2h0. (14)

By virtue of (13) and the condition v(t, x, h0) = 0, we have the equation (h0 − h)u1x + hu0x = 0, and integrating it
with allowance for (14), we obtain

u0 =
Ω1 − Ω2

2h0
h2 − (Ω1 − Ω2)h + a(t). (15)

The fluid discharge in the channel is equal to zero:

Q =

h0∫
0

u dy = a(t)h0 +
Ω2h

2
0

2
= 0;

therefore, a(t) ≡ −Ω2h0/2. To construct the solution, it is necessary to satisfy the kinematic condition ht

+ u(t, x, h)hx = v(t, x, h) at the interface y = h(t, x) between the flows with different constant vorticities. In
view of (12) and (13), these condition becomes

ht + (Ω1h + u0)hx + hu0x = 0.

With the use of (15), the last equation is reduced to the scalar conservation law

∂h

∂t
+

∂ϕ

∂x
= 0, ϕ(h) =

Ω1 − Ω2

2h0
h3 +

(
Ω2 − Ω1

2

)
h2 − Ω2h0

2
h. (16)

Thus, constructing the solution of the problem of motion of a two-layer fluid with piecewise constant vorticity
reduces to integrating Eq. (16). At the initial time (t = 0), we have h = h0 at x > 0 and h = 0 at x < 0 or h = 0
at x > 0 and h = h0 at x < 0, depending on the vorticities ω1 and ω2.

The condition of strong nonlinearity of the characteristic of Eq. (16) implies convexity of the function ϕ(h)
for all h ∈ (0, h0). We introduce the notation α0 = Ω1/Ω2. Then, the condition ϕ′′(h) �= 0 becomes

2−1 < α0 < 2. (17)

Inequality (17) implies that the parameter α = ω1/ω2 belongs to the interval (1/2, 2).
3. Simple Wave of Flow Interaction. If inequality (17) is satisfied, the examined problem has a

continuous solution specified by a simple wave. Because Eq. (16) and initial data (5) are invariant under uniform
extension of the variables x and t, the solution is sought in the form of a self-similar simple wave h = h(k) (k = x/t).
We obtain the equation (ϕ′(h) − k)h′(k) = 0, by virtue of which

k = ϕ′(h) =
3(Ω1 − Ω2)

2h0
h2 + (2Ω2 − Ω1)h − Ω2h0

2
(18)

for h′(k) �= 0. Solution of the characteristic equation (9) gives the same result.
From formulas (11) it follows that ur

1 − ul
0 = ul

1 − ur
0; therefore, one of the two inequalities is valid: ur

1 > ul
0

(see Fig. 1a) or ur
0 > ul

1 (see Fig. 1b). With the use of ωi, these inequalities are written as ω1+ω2 > 0 or ω1+ω2 < 0.
In the region of flow interaction, the characteristic root k varies from ul

0 to ur
1 or from ul

1 to ur
0. Because the flow

803



is symmetric about the central line of the channel, it is sufficient to consider the case ω1 + ω2 > 0; in this case, the
initial data for Eq. (16) are given by

h(0, x) =

{
0, x < 0,

h0, x > 0.
(19)

Differentiating (18), we obtain the following expressions for the first and second derivatives of the func-
tion h(k):

h′(k) =
(3(Ω1 − Ω2)

h0
h(k) + 2Ω2 − Ω1

)−1

, h′′(k) = −3(Ω1 − Ω2)
h0

(h′(k))3. (20)

From (20) it follows that for Ωi > 0, the inequality h′(k) > 0 holds; in the case 0 < Ω2 < Ω1, the function h(k) is
convex upward, and in the case 0 < Ω1 < Ω2, it is convex downward.

Let 0 < ω2 < ω1, ω1/ω2 = α < 2, Ω1 = ω1, and Ω2 = ω2. Different cases are analyzed similarly. Solution of
Eq. (16) yields the line y = h(k) [k = x/t ∈ (ul

0, u
r
1)] that separates the flows with different vorticities:

h(k) = − (2ω2 − ω1)h0

3(ω1 − ω2)
+

√
(2ω2 − ω1)2h2

0

9(ω1 − ω2)2
+

h0(2k + ω2h0)
3(ω1 − ω2)

(21)

[we choose the branch of the solution with the plus sign ahead of the square root since ω1 > ω2 and h′(k) > 0].
Substituting the function h(x/t) into formulas (15) and (14) and using the solution representation (12), (13), we
find the velocity field (u, v) in the flow interaction wave. The pressure on the upper boundary of the channel p∗ is
found by integrating any of Eqs. (3). It should be noted that the boundaries of the region of flow interaction move
at the characteristic velocity. Indeed, as h → 0 (h → h0), the characteristic root k → ul

0 = x′
2(t) [k → ur

1 = x′
1(t)].

For a qualitative analysis of the solution, we find the values of the functions h(k), u1,2(k), and ū(k) and
their first derivatives at the points A and C (for k = ul

0, ur
1):

h(ul
0) = 0, h(ur

1) = h0, u0(ul
0) = ul

0, u0(ur
1) = ur

0, u1(ul
0) = ul

1, u1(ur
1) = ur

1.

The first formula of (20) implies that

h′(ul
0) = −(ω1 − 2ω2)−1, h′(ur

1) = (2ω1 − ω2)−1.

Taking into account the relationship between the derivatives

u′
0 = ((ω1 − ω2)h/h0 − ω1 + ω2)h′, u′

1 = (ω1 − ω2)h′ + u′
0, ū′ = ω1h

′ + u′
0,

we obtain the values of the functions u′
1,2(k) and ū(k) at the points A and C:

u′
0(u

l
0) =

α − 1
α − 2

, u′
1(u

l
0) = 0, ū′(ul

0) =
1

2 − α
,

u′
0(u

r
1) = 0, u′

1(u
r
1) =

α − 1
2α − 1

, ū′(ur
1) =

α

2α − 1
.

(22)

4. Particle Trajectories. The integral curves x = x(t) and y = y(t) of the systems of differential equations
x′(t) = u(k, y) and y′(t) = v(t, x, y) = t−1V (k, y) (k = x/t) specify the particle trajectories. Let us pass to the
plane of the variables (k, y) and change the variable s = ln (t/t0). Then, the equations for the trajectories become

dk

ds
= u(k, y) − k,

dy

ds
= V (k, y). (23)

Let us consider the region ACF = {(k, y): ul
0 < k < ur

1, 0 < y < h(k)} (see Fig. 1), in which, according to
the solution representation (12), (13), we have

u(k, y) = ω1y + u0(k), V (k, y) = −yu′
0(k).

The singular points of system (23) are the points A = (ul
0, 0) and C = (ur

1, h0). Using (22), we linearize Eqs. (23)
in the neighborhood of the point A:

dk

ds
= ω1y − k − ul

0

2 − α
,

dy

ds
=

α − 1
2 − α

y.
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The eigenvalues of the coefficient matrix

λ1 = −(2 − α)−1 < 0, λ2 = (2 − α)(α − 1) > 0

are real and have opposite signs (1 < α < 2); therefore, the singular point A is a saddle. Equations (23) linearized
in the neighborhood of the point C are written as

dk

ds
= ω1(y − h0) − (k − ur

1),
dy

ds
= −h0u

′′
0(ur

1)(k − ur
1).

Setting k = ur
1 in the formula

u′′
0(k) =

ω1 − ω2

h0
(h′(k))2 +

(ω1 − ω2

h0
h(k) − ω1 + ω2

)
h′′(k)

and taking into account (20) and (21), we find u′′
0(ur

1):

u′′
0(ur

1) =
α(α − 1)

ω1h0(2α − 1)2
.

Calculation of the characteristic roots of the matrix of the right side of system (23) linearized in the neighborhood
of the point C yields

λ1,2 = −1
2

(
1 ∓ 1

2α − 1

)
< 0.

Therefore, the singular point C is a node.
Let us consider the region ABC = {(k, y): ul

0 < k < ur
1, h(k) < y < h0} (see Fig. 1), in which the functions

u − k and V have the form

u − k = u1(k) + ω2(y − h0) − k, V = −(y − h(k))u′
1(k) − h(k)u′

0(k)

and vanish at the points A = (ul
0, 0) and C = (ur

1, h0). Linearization of system (23) in the neighborhood of the
singular point A yields

dk

ds
= −(k − ul

0) + ω2y,
dy

ds
=

α − 1
ω2(α − 2)2

(k − ul
0).

Calculation of the characteristic roots of the coefficient matrix of the right side of the linearized system shows that
the roots

λ1,2 = −1
2

(
1 ∓ α

2 − α

)
are real and have opposite signs. Therefore, the point A is a saddle. Linearization Eqs. (23) in the neighborhood
of the singular point C yields

dk

ds
=

α

1 − 2α
(k − ur

1) + ω2(y − h0),
dy

ds
=

α − 1
1 − 2α

(y − h0).

The eigenvalues of the coefficient matrix

λ1,2 = −1
2

(
1 ∓ 1

2α − 1

)
< 0

are real and have the same sign. Therefore, the point C is a node.
The results of numerical integration of Eqs. (23) illustrate the established nature of the singularities at the

points A and C (Fig. 2a). In the case 0 < ω1 < ω2, 1/2 < α < 1, the points A = (ul
0, 0) and C = (ur

1, h0) are also
singular for Eqs. (23) describing particle trajectories. In this case, the point A is a node, and the point C is a saddle
(Fig. 2b). Along the interface of the flows with different vorticities, jet flow is formed which has a substantially
two-dimensional nature.

5. Discretization of Equations (8) and Differential Conservation Laws. The equations of shear
fluid flow in a channel are integrodifferential, and, hence, the methods developed for the numerical calculation of
differential systems of conservation laws cannot be applied to them. Following [7], we divide the segment [0, 1] into
N intervals (0 = λ0 < λ1 < . . . < λN−1 < λN = 1) and introduce the notation

yi = Φ(t, x, λi), ηi = yi − yi−1, ui = u(t, x, λi), ωi = (ui − ui−1)/ηi, uci = (ui + ui−1)/2.
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Fig. 2. Particle trajectories in a self-similar simple wave: (a) 0 < ω2 < ω1; (b) 0 < ω1 < ω2.

Integration of system (8) with respect to λ yields

( λi∫
λi−1

H dλ
)

t
+

( λi∫
λi−1

uH dλ
)

x
= 0, (ui − ui−1)t + ((u2

i − u2
i−1)/2)x = 0,

uN = −
( N∑

i=1

λi∫
λi−1

H dλ
)−1 N∑

i=1

λi∫
λi−1

wH dλ.

Taking into account that H dλ = dy and applying the piecewise linear approximation of the velocity profile
with depth

u = ωi(y − yi−1) + ui−1, y ∈ [yi−1, yi],

we obtain the following system of 2N differential equations for the quantities (η1, . . . , ηN , ω1η1, . . . , ωNηN ):

∂ηi

∂t
+

∂

∂x
(uciηi) = 0,

∂

∂t
(ωiηi) +

∂

∂x
(uciωiηi) = 0 (i = 1, . . . , N), (24)

uci = u0 +
ωiηi

2
+

i−1∑
j=1

ωjηj , u0 = −
( N∑

i=1

ηi

)−1 N∑
i=1

ηi

(ωiηi

2
+

i−1∑
j=1

ωjηj

)
.

Equations (24) obtained by discretization of the integrodifferential conservation laws (8), describe the multilayer
motion of an ideal fluid in a channel with a piecewise linear velocity profile along the depth in each of the N layers.
A consequence of the system is the equation (η1 + . . .+ηN )t = 0. If η1 + . . .+ηN = h0 = const at t = 0, the channel
depth is equal to h0 at all times. A numerical solution of system (24) can be obtained using methods developed to
solve hyperbolic equations [8].

It should be noted that Eq. (16), which is used to describe two-layer fluid flow, is a particular case of system
(24). Indeed, let us consider the case N = 2 with the initial data

ηi(0, x) =

{
2−1(1 + (−1)i)h0, x < 0,

2−1(1 + (−1)i+1)h0, x > 0,

ωiηi

∣∣∣
t=0

= ηi(0, x)Ωi (Ωi = const, h0 = const, i = 1, 2).

Then, by virtue of (24), the vorticity in the layers retains constant values ωi = Ωi during the interaction of the flows;
therefore, the third and fourth equations for ω1η1 and ω2η2 coincide with the first two equations for η1 and η2. In
view of the equality η1 + η2 = h0 and the notation η1 = h, the first two equations (24) reduce to the conservation
law (16).

6. Discontinuity Solution. Solution of the problem of the interaction of shear flows with piecewise
constant vorticities ωi (i = 1, 2) in a channel reduces to integrating the scalar conservation law (16), in which one
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Fig. 3. Constructing a convex extension for the conservation law (16) in the following cases:
(a) 0 < Ω2 < Ω1 and Ω1/Ω2 > 2; (b) Ω2 < 0 < Ω1 and |Ω2| < Ω1; (c) 0 < Ω1 < Ω2 and
Ω1/Ω2 < 1/2; (d) Ω1 < 0 < Ω2 and |Ω1| < Ω2.

needs to set Ω1 = ω1 and Ω2 = ω2 for ω1 + ω2 > 0 or Ω1 = ω2 and Ω2 = ω1 for ω1 + ω2 < 0. If the function ϕ(h) is
not convex, Eq. (16) does not have a continuous solution that links the quantities h = h− and h = h+ (h− = 0,
h+ = h0 or h− = h0, h+ = 0).

We obtain a solution of Eq. (16) with initial data (19) in the form of a combination of a self-similar simple wave
and a shock. According to the general theory of hyperbolic equations [9, 10], to obtain a steady-state discontinuous
solution of the nonconvex conservation law, it is necessary to construct a convex extension taking into account the
stability conditions for the discontinuity [11]:

ϕ(h) − ϕ(h−)
h − h− ≥ D (h− < h < h+),

ϕ(h) − ϕ(h+)
h − h+

≤ D (h+ < h < h−).
(25)

As noted above, it is sufficient to consider the case Ω1+Ω2 > 0, which corresponds to the initial data h = h− = 0 for
x < 0 and h = h+ = h0 for x > 0. For this, we use the first inequality (25) and construct the lower convex extension
(Fig. 3) by replacing the segment (0, h∗) [or (h∗, h0)] of the curve ϕ = ϕ(h) by a straight-line segment (dashed
line). The slope of the dashed straight line (Fig. 3) is equal to the velocity of propagation of the discontinuity D,
and the length of the segment on which the curve ϕ = ϕ(h) is replaced by the straight-line segment is equal to the
discontinuity amplitude h∗.

The quantities D and h∗ are determined by solving the system of equations ϕ(h∗) = Dh∗ and ϕ′(h∗) = D

(Fig. 3a and b):
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Fig. 4. Possible wave configurations: a steady-state discontinuity (dashed line) and a simple centered
wave adjacent to the discontinuity front (solid lines): (a) 0 < Ω2 < Ω1 (Ω1/Ω2 > 2) or Ω2 < 0 < Ω1

(|Ω2| < Ω1); (b) 0 < Ω1 < Ω2 (Ω1/Ω2 < 1/2) or Ω1 < 0 < Ω2 (|Ω1| < Ω2).

D =
α2

0Ω2h0

8(1 − α0)
, h∗ =

(α0 − 2)h0

2(α0 − 1)

(
α0 =

Ω1

Ω2

)
. (26)

In the cases presented in Fig. 3c and d, the discontinuity velocity and amplitude are found similarly from the system
ϕ(h∗) = D(h∗ − h0), ϕ′(h∗) = D.

The picture of motion in the plane of (x, t) is shown in Fig. 4, where the dashed line shows a strong shock
x = Dt, and the solid lines are a fan of characteristics of the simple wave, whose slope varies from D to ur

1 (Fig. 4a)
or from ul

0 to D (Fig. 4b).
Let us consider two cases where the specified constant vorticities ωi satisfy the inequalities.
Case 1: 0 < ω2 < ω1 and ω1/ω2 > 2;
Case 2: ω2 < 0 < ω1 and |ω2| < ω1.
Cases 1 and 2 cover all qualitative features of the solution of the shear flow interaction problem for the model

used. In this case, one needs to set Ω1 = ω1, Ω2 = ω2, and α0 = α = ω1/ω2 and use the function h(x), equal to
zero for x < 0 and equal to h0 for x > 0, as the initial data for Eq. (16).

Discontinuous Solution 1. The solution of Eq. (16) has the form

h(t, x) =

⎧⎪⎨
⎪⎩

0, x < Dt,

h̄(k), Dt ≤ x ≤ ϕ′(h0)t,

h0, x > ϕ′(h0)t.

(27)

Here the discontinuity velocity D is given by the first formula in (26); the slope of the characteristic ϕ′(h0), along
which the simple wave adjoins the specified shear flow, is equal to ur

1 = ω1h0/2; the function h̄(k) is defined by
formula (21) with k = x/t ∈ (D, ϕ′(h0)]. Using the known function h(t, x) = h̄(x/t) and formulas (12)–(15) and (3),
it is easy to find the solution of the original problem (4) [the velocity field (u, v) and the pressure p]. In solutions
of type 1, the ratio of the discontinuity amplitude to the channel depth h∗/h0 ∈ (0, 1/2) [the quantity h∗ is defined
by the second formula in (26); the minimum and maximum values of h∗/h0 are reached for α → 2 and α → ∞,
respectively].

In Euler coordinates, the relations at the discontinuity (10) become

[(u − D)2 − (u1 − D)2] = 0, [(u − D)dy] = 0, [Q] = 0. (28)
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Fig. 5. Particle trajectories in the discontinuous solution 1 (0 < ω2 < ω1 and ω1/ω2 > 2).

Behind the discontinuity front, the horizontal velocity component u(k, y) has the form

u(D + 0, y+) = u+(y+) =

{
ω1y

+ + u∗
0, 0 ≤ y+ ≤ h∗,

ω2(y+ − h0) + u∗
1, h∗ ≤ y+ ≤ h0,

where

u∗
0 = u0(D + 0) = − (3α − 4)αω2h0

8(α − 1)
, u∗

1 = u1(D + 0) =
α2ω2h0

8(α − 1)
= −D.

Ahead of the discontinuity, u(D − 0, y) = ul(y) = ω2y + ul
0. Therefore, the second equation of (28) has the form

(u+(y+) − D) dy+ = (ul(y) − D) dy.

Solving this equation with allowance for y+(0) = h∗, we obtain the function

y+(y) = −α − 2
2

h∗ +

√
α − 2

2
h∗y + y2 +

α2h2∗
4

(0 ≤ y ≤ h0), (29)

which specifies the law of correspondence between the entry and exit points of the trajectories at the discontinuity
front (in the integration, it was taken into account that ul(y) − D > 0, u+(y+) − D > 0, h∗ ≤ y+ ≤ h0).

The particle trajectories in the constructed discontinuous solution for ω1 = 10, ω2 = 1, h0 = 1 are shown
in Fig. 5. (The form of Fig. 5 is qualitatively the same for all values of ωi that satisfy the inequalities in Case 1.)
According to (29), the shear flow with vorticity ω2 occupying the entire channel depth 0 ≤ y ≤ h0 ahead of the
discontinuity k = D − 0 occupies only its part h∗ ≤ y ≤ h0 behind the discontinuity (trajectories 1–3 in Fig. 5).
In the region M = {(k, y): D < k < ur

1, 0 ≤ y ≤ h(k)}, the particles perform return motion with respect to the
wave, i. e., the quantity u − k changes sign (trajectories 4–7 in Fig. 5). It should be noted that for k = D, the
quantity u+(y) − D changes sign as y changes from 0 to h∗: u+(y1) − D < 0 if y1 ∈ [0, h∗/2) and u+(y2) − D > 0
if y2 ∈ (h∗/2, h∗]. The solution of the equation

(u+(y1) − D) dy1 = (u+(y2) − D) dy2 [y2(0) = h∗]

implies the law of correspondence between the entry and exit points of the trajectories y2 = h∗−y1 in the flow with
vorticity ω1 at the front k = D follows. The constructed solution has a singularity at which the particles arrive at
the discontinuity line from the region k > D and, having changed the Euler coordinate y and the velocity vector at
the discontinuity, return to the region k > D.

By the construction of the solution (see Fig. 5), the vorticity jump at the discontinuity is equal to zero:
[ω] = [uy] = 0. From this relation and the condition [(u − D)dy] = 0, it follows that [(u − D)2 − (u1 − D)2] = 0.
The last equation of (28) is also valid for the solution obtained, and it is verified by direct calculations.
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Fig. 6. Particle trajectories in the discontinuous solution 2 (ω2 < 0 < ω1 and |ω2| < ω1).

Let us show that the energy flux decreases in passing through a shock. For the smooth solutions of Eqs. (7),
the energy conservation law for the fluid layer is satisfied:

( 1∫
0

u2H dλ
)

t
+

( 1∫
0

u3H dλ + 2p∗
1∫

0

uH dλ
)

x
= 0.

Because Q =

1∫
0

uH dλ = 0, the total energy of the layer decreases if

[ h0∫
0

u2(u − D) dy
]
≤ 0.

Calculation of the integrals

el =

h0∫
0

(ul − D)(ul)2 dy, e+ =

h0∫
0

(u+ − D)(u+)2 dy

for α > 2 and ω2 > 0 yields the inequality e+ − el < 0, which expresses the decrease in the energy flux at the
discontinuity.

Discontinuous Solution 2. If the inequality ul − D ≥ 0 is satisfied for α < −2(1 +
√

2), the form of the
solution corresponds qualitatively to the discontinuous solution 1. Let −2(1 +

√
2) < α < −1, i. e., the quantity

ul −D changes sign. The line y = h(t, x) separating the flows with vorticities ω1 and ω2 is defined by formula (27).
It should be noted that ul − D > 0 for y ∈ [0, y∗) and ul − D < 0 for y ∈ (y∗, h0], where

y∗ = 8−1(1 − α)−1(2 − α)2h0.

With the use of y+(0) = h∗, the second relation in (28) reduces to the differential equation

(y − y∗) dy = (y+ − 2y∗) dy+.

Integration yields the law of correspondence between the entry and exit points of the trajectories at the discontinuity
front:

y+(y) =
2 − α

2
h∗ −

√
y2 − 2 − α

2
h∗y +

α2h2∗
4

(
0 ≤ y ≤ y∗∗ =

α2h0

4(1 − α)

)
. (30)

Relation (30) is monotonic and y+(y∗∗) = h0.
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The particle trajectories in the discontinuous solution 2 for ω1 = 3, ω2 = −1, and h0 = 1 are shown in Fig. 6.
The particles located in the layer y ∈ [0, y∗∗] ahead of the discontinuity k = D−0 occupy the layer [h∗, h0] (curves 1
and 2) behind the discontinuity k = D + 0. The particles occupying the layer y ∈ (y∗∗, h0] at k = D − 0 undergo
a discontinuity (curves 3 and 4). At the discontinuity, the particles from the layer y1 ∈ [y∗∗, y∗) at k = D − 0
pass into the layer y2 ∈ (y∗, h0] at k = D − 0. The law of correspondence between the trajectories is given by the
formula y2(y1) = h0 + y∗∗ − y1. We note that ul(y1) − D > 0 and ul(y2) − D < 0. In the region M = {(k, y):
D < k < ur

1, 0 ≤ y ≤ h(k)}, the particles perform rotational motion with respect to the wave (curves 5–8), and
the trajectory entering the discontinuity k = D undergo a jump (curve 5). The first and third relations of (28) are
verified similarly to Case 1.

Conclusions. The problem of the interaction of ideal shear flows with piecewise constant vorticities was
solved in the long-wave approximation. The existence of self-similar solutions describing all possible wave con-
figurations that include a simple wave or a strong discontinuity and a simple wave was established. A system of
differential equations for modeling the interaction of shear flows with arbitrary velocity profiles monotonic in depth
was proposed.
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